Who Was Eugene Wigner?

eugene wigner nobel prize nuclear physics

Eugene Wigner was a Hungarian American physicist who made important contributions to the physics of elementary particles. He was a Nobel laureate who was nicknamed "a silent genius" by his colleagues.

Advice for students

Wigner said: In science, it is not speed that is the most important. It is the dedication, the commitment, the interest and the will to know something and to understand it — these are the things that come first.

Early education

Eugene Wigner (1902-1995) was born to a middle class family and home schooled till the age of 9. During this time period, he developed an interest in mathematical problems.

Wigner started off by studying chemical engineering at the Technical University of Berlin. There he got the opportunity to attend seminars by leading German scientists: Max Planck, Werner Heisenberg and Albert Einstein. As a result, Wigner decided to pursue a career in physics.

Interesting fact

Eugene Wigner and Paul Dirac had become close friends in America. In 1934, at Princeton, Wigner introduced his sister Manci Wigner to Dirac, with whom she married.

Known for

Wigner was the first to identify several characteristics of the strong nuclear force, such as the fact that the force between two nucleons is the same, regardless of whether they are protons or neutrons. The strong force is charge independent.

Notable awards

Eugene Wigner won the Nobel Prize in physics in 1963. Earlier, he had won the Enrico Fermi award in 1958 for his work with nuclear reactors to convert Uranium into Plutonium.

5 Motivational Quotes By Madame Curie

quotes by marie curie

Marie Curie (1867-1934) is the only person in history who has won two Nobel Prizes in two different sciences, physics and chemistry. Curie was prohibited from higher education in her native country Poland. She overcame all obstacles and became a leading figure in the academia.

Following are five inspiring quotes by Madame Curie:

Advice to her daughters

Life is not easy for any of us. But what of that? We must have perseverance and above all confidence in ourselves. We must believe that we are gifted for something, and that this thing, at whatever cost, must be attained.

To make a better world

You cannot hope to build a better world without improving the individuals. To that end each of us must work for his own improvement, and at the same time share a general responsibility for all humanity, our particular duty being to aid those to whom we think we can be most useful.

Science has great beauty

A scientist in his laboratory is not only a technician: he is also a child placed before natural phenomena which impress him like a fairy tale. We should not allow it to be believed that all scientific progress can be reduced to mechanisms, machines, gearings, even though such machinery also has its beauty.

The way to success

I was taught that the way of progress was neither swift nor easy.

Be humble

I have no dress except the one I wear every day. If you are going to be kind enough to give me one, please let it be practical and dark so that I can put it on afterwards to go to the laboratory.

Marie Curie got married to Pierre Curie, along with whom she won her first Nobel Prize in physics. The couple went on a bicycle tour of the French countryside for their honeymoon.

5 Quotes By CV Raman, India's Nobel Laureate

cv raman nobel prize indian scientist physics

CV Raman was an Indian physicist who won the Nobel Prize in 1930. His discovery of the "Raman Effect" has extensive use in chemistry to provide a structural fingerprint by which strange molecules can be identified. Raman used to say "Ask the right questions, and nature will open the doors to her secrets."

Raman was born into an orthodox South Indian Brahmin family but his interests in the sciences kept him away from religious or spiritual activities. Eventually he described himself as an agnostic. Following are some amazing quotes by the first Indian Nobel laureate in science, CV Raman:

1. There is no Heaven, no Swarga, no Hell, no rebirth, no reincarnation and no immortality. The only thing that is true is that a man is born, he lives and he dies. Therefore, he should live his life properly. (1934)

Many started referring to Raman as an atheist, which he denied.

2. If there is a God we must look for him in the Universe. If he is not there, he is not worth looking for. I am being looked upon in various quarters as an atheist, but I am not. The growing discoveries in the science of astronomy and physics seem to be further and further revelations of God. (1945)

3. In a conversation with Mahatma Gandhi, Raman said "Mahatma ji, religions cannot unite. Science offers the best opportunity for a complete fellowship. All men of Science are brothers."

Raman was also active politically. He was famous for being an advocate of women's rights.

4. I have a feeling that if the women of India take to science and interest themselves in the progress and advance of science as well, they will achieve what even men have failed to do. Women have one quality--the quality of devotion. It is one of the most important passports to success in science.

5. As a political activist, Raman said: It seems to me that the real danger before our country is the crushing down of individual freedom and initiative by the steamroller of government authority. Democracy without freedom for the individual is a sham and a delusion. (1954 interview)

You can judge that CV Raman was not only a pioneering scientist but also a great thinker whose thoughts were progressive and way ahead of the time. Raman was the first Indian to win Nobel Prize in science who contributed immensely to the idea of agnosticism.

Anne L'Huillier Becomes Fifth Woman To Win Physics Nobel Prize

physics nobel prize 2023 Anne L'Huillier

After Madame Curie (1903), Maria Goeppert-Mayer (1963), Donna Strickland (2018), Andrea Ghez (2020), now Anne L'Huillier has become the fifth woman to win a Nobel Prize in physics (2023). She shared the prize with Pierre Agostini and Ferenc Krausz.

According to the official Nobel Prize website, the three scientists are "being recognized for their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules".

Anne L'Huillier is a French-Swedish physicist who leads an attosecond physics group at Lund University which studies the movements of electrons in real time using extremely short pulses of light.

What is attosecond?

An attosecond is one quintillionth of a second or 1 attosecond equals 0.000000000000000001 second - an unimaginably short amount of time.

This year's laureates’ experiments have produced pulses of light so short that they are measured in attoseconds. These pulses can be used to capture pictures of atoms and molecules.

In simple words, the three scientists have created a very high-shutter-speed camera. If a normal camera is used to film a racing car, the picture will be blurry. But high shutter speed camera can "freeze" motion and capture a good image.

Why is this important?

Eva Olsson, chair of the Nobel Committee for physics has said: “We can now open the door to the world of electrons. Attosecond physics gives us the opportunity to understand mechanisms that are governed by electrons."

This technology will also help in inventing slick and more efficient electronic gadgets. Another possible application is to study molecular level changes in the blood that lead to diseases.

About Anne L'Huillier

Anne was born 1958 in Paris, France. She got her Masters degree in mathematics but switched to experimental physics for her PhD. Anne completed her doctorate in 1986 from Pierre and Marie Curie University. In 1994 she moved to Sweden and joined Lund University.

5 Amazing Inventions By Physicists We Use Every Day

5 science inventions we use in daily life, examples of physics in every day life

Did you know that one of the first video games was invented by a physicist? Why do you have to put your bags through a machine when you enter airport? In this post, we will look at five simple or somewhat complicated inventions by physicists that are used in daily life.

Although, from Wi-Fi to smart TV - physics is everywhere around us in the form of modern technology. The following are inventions we rarely talk about, or are thankful for, despite making use of them on regular basis.

1. Lever

Archimedes said, “Give me a firm place to stand and a lever and I can move the Earth." That was never tested but a lever is put to use in many forms today: Stapler, a pair of scissors and seesaw. There are different classes of levers:

a) Class I lever is when fulcrum is between load and effort. Example: Seesaw.
b) Class II lever is when load is between fulcrum and effort. Example: Door.
c) Class III lever is when effort is between fulcrum and load. Example: Stapler.

2. Video games

Physics has had an important impact in the early development of video games. In 1958, physicist William Higinbotham created what is thought to be the first video game. It was called Tennis For Two, a very simple game that shaped the history of computer games.

3. Electric generator

Physicist Michael Faraday invented the first electric motor in 1821. Shortly after, Faraday invented the electric generator, based on electromagnetic induction discovered by him. This is used to generate electrical power - which in turn is used to run electrical appliances.

When Faraday first presented induction, he was asked by some politician or reporter: What use is it in the practical world? To this Faraday replied, What use is a newborn baby?

4. Battery

While Faraday invented a way to generate electrical power by fluctuating magnetic fields, another physicist Alessandro Volta had invented a way to store electrical power in 1800. In honor of Volta, the SI unit of electric potential is called Volt. Today, almost all the toys that children play with use batteries.

5. X-ray

Some say that Nikola Tesla discovered x-rays by accident. Others credit Wilhelm Roentgen for inventing a way to generate x-rays in 1895. Whatever the case may be, did you know that x-rays are not only used in healthcare but also in the security industry? Every time your luggage passes through a security machine, an officer can see what is inside your bags.

Who Was Nobel Laureate Irène Joliot-Curie?

irene curie - daughter of marie curie winner of nobel prize chemistry

"One must work seriously, be independent and not spend life just having fun; that is what our mother - Marie Curie - always told us, but never that science was the only career worth pursuing."

Irène Joliot-Curie [1897-1956] was a French chemist and physicist. She was the elder daughter of Pierre Curie and Marie Curie, and a Nobel laureate, like her parents - continuing the Curie legacy.

Early life

Irene and her younger sister Eve lost their father Pierre Curie early on in 1906, when he had a tragic accident. Madame Curie was left alone to raise the two daughters.

marie curie with daughters irene and eve
Madame Curie with daughters Irene and Eve

Irène was great when it came to science and mathematics, her mother chose to focus on home schooling instead of the more conventional public school route.

Marie formed a local entity called "The Cooperative" with other distinguished French scholars, in which nine students that were children of the most eminent personalities of France took admission. Irene was part of that club.

Children were encouraged to learn not only the sciences but also engage in cultural experiences, play music, study foreign languages, etc.

While a teenager, Irene joined her mother in laboratory as an assistant. Curie taught her daughter - "Life is not easy for any of us. So what of it? One must have confidence and believe that they are gifted for something, and that this thing, at whatever cost, must be attained.


Jean Frédéric Joliot was a French chemical engineer who wanted to work with Madame Curie, winner of two Nobel Prizes. He became an assistant to Marie Curie at the Radium Institute. Joliot fell in love with Irène, and soon after their marriage in 1926 - they both changed their surnames to Joliot-Curie.

Work as a couple

Similar to Pierre and Marie Curie, daughter Irene worked alongside husband Jean, in the laboratory. In 1933, the couple became the first to calculate the accurate mass of the neutron, which was discovered in 1932.

It is an alchemist's dream to turn one element into another. In 1934 Joliot-Curies used their knowledge of chemistry and realized that dream. They created radioactive nitrogen from boron, radioactive isotopes of phosphorus from aluminum, and silicon from magnesium.

By then, radioactive materials were used in medicine - it was a growing industry. Their techniques allowed radioactive elements to be created quickly, cheaply, and in abundance. Today these materials are even used in the treatment of cancer.

For their pioneering work, Joliot-Curies won the Nobel Prize in 1935, as a couple, replicating the success of Pierre and Marie Curie three decades prior to this. This added to the Curie family legacy of five Nobel Prizes.


Much like her mother, Irene died of over exposure to radioactive materials. She was diagnosed with leukemia in 1946 as she had been accidentally exposed to polonium in 1946. Irene died in 1956 aged 58.

As Irene was an atheist, her family asked not to conduct a religious ceremony for her death. Her children, daughter Helene and son Pierre, went on to become notable scientists - physicist and biochemist respectively.
© 2019-2022
made with by vedang