Why You Should Read The Magic of Reality

Richard Dawkins The magic of reality book review best science book

All science is either physics or stamp collecting. Physics students tend to be ignorant of other sciences like geology, biology and chemistry. If there is one book that serves as a gentle reminder of this fact then The Magic of Reality by Richard Dawkins is it.

Richard Dawkins is a renowned English evolutionary biologist, former esteemed professor at Oxford University and a popular science writer whose books may come off as controversial to many. But his book The Magic of Reality is the perfect introduction to science, for everyone.

Richard has made science so simple and fun to read, through stories well told and analogies plucked from day to day life. Whether it be astronomy, biology, geology, physics or chemistry, all the major sciences have been covered in his book and with so much detail that it is commendable.

The opening chapter to The Magic of Reality is the most important section in the book as it explains the three kinds of magic we know of but often fail to distinguish between.

The first magic is that we do not yet understand, that we refer to as supernatural or mystery. The second magic is seen on stage or illusion in one word. The third kind is the magic of reality (straight from the title of the book) or what we know for sure is true – natural.

Throughout the book, Richard Dawkins has narrated popular myths from ancient history. Tales through which our ancestors, in their naivety, mistook the seemingly natural phenomena as mystical or supernatural.

Myths from Japan, India, the Middle East, from the Americas and from Africa that later turned out to be science of reality. Dawkins shows that what we didn't have explanation for, we put it up to the unknown, or God in some cases, which is not the way of science. Science is the pursuit of knowledge, not giving up out of ignorance.

For example, there is a creation story from Central Africa in which the great God Bumba felt a terrible pain in his stomach, due to which, he vomitted the sun, the moon and the stars. The ocean water dried up with the heat and so there was land. But still ailing, Bumba vomited once more, this time bringing forth some animals, the leopard, the eagle, the crocodile, the fish, the tortoise, and then some men.

After each made-up story, genuine facts are revealed comprehensively. Richard Dawkins and other biologists like him know that there was no first human. Even other animals did not just pop up out of the blue as in the story. Dawkins explains this extensively in beautiful fashion.

Dawkins has also shown in the book how life is interconnected through sciences, how is it evolved over many many stages, slowly but surely. Strong evidences are laid out for the readers, including but not limited to, how similar human DNA is to those of chimps, cats, cattle and mice.

Consider another popular myth, that the rainbow was a bridge between the heavens and the earth. The great gods would use the bridge of the colorful rainbow to descend and to ascend.

In words of Richard Feynman, American physicist and Nobel laureate: "God was always invented to explain mystery. God is always invented to explain those things that you do not yet understand."

Dawkins has eloquently described the reasons why rainbows form, why they are vibrant in color, how to find a rainbow at what angle and so on. In fact, there is an entire chapter dedicated to rainbow in the book.

Similar stories have been told about night and day, about changing of seasons and eclipses, etc. from a time when we did not still possess the tools necessary to comprehend nature in the scientific way. Through questions, guided by logic and reason, verified with experiment.

Towards the end of the book, Richard Dawkins has pinpointed that despite making numerous advances in science and technology, there's plenty of people who reject some myths selectively but on the other hand, accept other "more beloved" myths.

For example, people reject frogs turning into princes, they also reject the story of Bumba, and other such creation stories; but they accept those of a prophet who turned water into wine or that the universe was created by four-headed God upon a lotus.

No surprise that Dawkins ends the book this way as he is an outspoken atheist and advocate of rational thinking. Hence he has criticized the foundations of organized religion in the book towards the end and this time more gently.

richard dawkins magic of reality book review best science book

The whole point of the book is that truth is even more beautiful than popular fantasy. Next to the magic of reality, the other two magics, although to some extent entertaining to see or hear, become cheap by comparison.

Dawkins says: The magic of reality is, in one word, wonderful. Wonderful and real. Wonderful because real. Read The Magic of Reality if you wish to have a new perspective on the sciences and gain a thorough understanding of everyday natural phenomena.
The Magic of Reality was praised by the New Scientist calling the book a "triumph". Bill Gates said, "engaging book offering compelling answers to big questions, from how the universe formed to what causes earthquakes." The magic of reality makes vastness of science less daunting and accessible to everyone.

Deepak Dhar First Indian To Win Boltzmann Medal

indian physicist deepak dhar boltzmann medal

Austrian physicist Ludwig Boltzmann (1844-1906) who is well known for presenting the logarithmic connection between entropy and probability in his kinetic theory of gases, was never properly recognized during his lifetime.

In celebration of his ground-breaking work, Boltzmann medal is awarded once every three years by IUPAP in the field of statistical mechanics. In 2022, Deepak Dhar became the first Indian physicist to win the Boltzmann medal, sharing it with American physicist John Hopfield.

Deepak Dhar is famous among his students as a loveable science teacher. He was also a teaching assistant to Nobel laureate Richard Feynman when he completed his PhD from Caltech in 1978.

Deepak was born in Oct, 1951 to an average Indian household in the northern state of Uttar Pradesh and showed proficiency in mathematics from an early age. He completed his bachelor degree from the prestigious Allahabad University in 1970.

Deepak moved to the US after getting master's degree in physics from IIT-Kanpur in 1972. He returned to India the same year he completed his PhD from Caltech, where he held Richard Feynman fellowship. This shows his undying love for the motherland and a desire to teach in India.

Deepak became a full-time research fellow at TIFR, Mumbai where he was later promoted as an associate professor in 1991. He also served as visiting professor at the University of Paris during this time.

Post retirement, Deepak Dhar is a distinguished visiting faculty member at the Indian Institute of Science Education and Research, Pune. After winning Boltzmann medal, Deepak said: It is always nice to win but the award was never the driving force.

Quoting Isaac Newton, Dhar added: I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, whilst the great ocean of truth lay all undiscovered before me.

Dhar was previously honored with Satyendra Nath Bose medal by the government in 2001. He feels that much work can still be done in statistical mechanics, a field pioneered by Bose in India. Science needs to be loved, Dhar feels, and not something students are afraid of.

Deepak is known for his research on stochastic processes or random systems, that are part and parcel of day to day life. Examples include stock market, blood pressure, movement of a gas molecule, etc.

Deepak Dhar feels that physics has a lot new opportunities that are screaming for attention. But we are short-changing younger generation with low quality education, he says. Why would students pursue career in physics if their interest is killed at early stage?

5 Important Discoveries By Heinrich Rudolf Hertz

heinrich hertz biography experimental physics

Heinrich Hertz (1857–1894) was a renowned German experimental physicist whose discoveries over a period of 10 years served as the foundation stones of modern communication technology and quantum mechanics.

Hertz was home schooled from age 15, as he was an outstanding student who showed proficiency not only in the sciences but also in foreign languages, such as Arabic and Sanskrit. In 1930, the SI unit of frequency was named Hertz in his honor.

1. Inertia of electricity

Hertz studied under physicist Hermann von Helmholtz at the University of Berlin. In 1878, Helmholtz was involved in a fierce debate with a colleague: Does electric current have mass? He announced a prize to anyone who could answer the question.

At that time, electron was not yet discovered so it was a big ask. Hertz accepted the challenge as it gave him immense pleasure in learning directly from nature through well thought out experiments.

After one year of hard work, Hertz settled the debate by showing in a series of experiments that if electric current had any mass at all, it must be negligibly small. Nearly 20 years later, electron was discovered by J.J. Thomson.

2. Radio waves

Hertz was 7 years old when James Clerk Maxwell wrote the famous equations of electromagnetic theory. No one was able to generate electromagnetic waves until Hertz in 1887. Hertz was 30 years old at the time.

Hertz was demonstrating electrical sparks to his students in 1886. He noticed during the lecture that sparks produced a regular electrical vibration within the electric wires.

Hertz thought that this vibration was caused by accelerating and decelerating electrical charges. If Maxwell was right, this would radiate electromagnetic waves through air.

When Hertz was asked in an interview the use of electromagnetic waves, he replied: Nothing I guess. This is just a home-made experiment that proves Maestro Maxwell right.

3. Electromagnetic spectrum

Hertz calculated the speed of radio waves he created and found it to be the same as the speed of light. This was an experimental triumph as he had proved yet another prediction of Maxwell.

Hertz also showed that the waves radiating from his oscillator could be reflected, refracted, polarized and produced interference patterns like light.

In 1890s, Hertz also worked with ultraviolet and x-ray. He concluded that UV, radio, x-ray and light are part of a large family of waves which is today called the electromagnetic spectrum.

4. Photoelectric effect

In 1887, Hertz observed that an electrically charged metal when put under ultraviolet light lost its charge faster than otherwise. This is called photoelectric effect.

As Hertz was an experimental physicist he did not try explaining the phenomenon. Theoretical physicist Albert Einstein was a young boy in Munich at this time.

In 1905, Einstein wrote the theory of photoelectric effect and won the Nobel Prize for the same in 1921. This work played a key role in the development of quantum mechanics.

5. Contact mechanics

Hertz wrote a paper in 1881 outlining the field of contact mechanics. Contact mechanics is a part of mechanical engineering in which engineers study the touch points of solids.

The principles of contact mechanics are useful in applications such as rail-wheel contact, braking systems and tyres.

Summing up

Heinrich Hertz was only 36 years old when he died of complications in surgery to fix his constant migraines. In just 15 years of his scientific career Hertz made pioneering contributions to various fields of physics.

From Maxwell to Einstein, Hertz is the famous experimenter whose observations either confirmed a previous theory or laid groundwork for a new theory. Hertz is among the few scientists in whose honor an SI unit is named.

Big Breakthrough In Fusion Energy - The Power of Sun

Nuclear fusion energy how soon Einstein

UK-based JET laboratory created a world record when they generated 22 megajoules of fusion energy in 1997. Now nearly 25 years later JET have more than doubled the previous record by creating 59 megajoules of fusion energy over five seconds.

While 5 seconds may not sound impressive on ordinary timescale but on a nuclear timescale it is a very long time indeed. The achievement by JET also restores faith in human research and endeavor into replicating the power of Sun on earth.

Practically, this much fusion energy can only run a 32 inch LED TV for 15 days but it's a great beginning towards clean energy future. Nuclear fusion is the potential of virtually unlimited supplies of low-carbon and low-radiation energy.

Dr Joe Milnes, head of operations at the JET lab said: We have demonstrated that it is possible to create a mini star inside of our machine and hold it there for five seconds, which really takes us into a new realm.

In a nuclear fusion, two light nuclei combine to form a single heavier nucleus. The process releases energy because mass of the resulting nucleus is less than total mass of the two original nuclei. The leftover mass gets converted into energy by Einstein's energy-mass equivalence.
In the Sun's core, fusion is possible at around 10 million degrees Celsius. However, at the much lower pressures that are on Earth, the temperature required to produce nuclear fusion need to be above 100 million degrees!

And there is not a single material on earth that can withstand direct contact with that amount of heat. Which is why, to achieve fusion in a laboratory scientists use thousands of tons of magnet to hold in place super heated gas, or plasma.

JET labs CEO Professor Ian Chapman said: These experiments just had to work because if they didn't then we'd have real concerns about whether ITER could meet its goals.

breakthrough in nuclear fusion ITER in france
ITER construction in 2018

ITER in Southern France is the largest nuclear fusion reactor with 10 times more plasma than any other fusion reactors today. Over 30 countries are participating in this long term project of generating clean electricity. ITER will power 200,000 homes once it becomes operational.

Because controlled nuclear fusion releases nearly four million times more energy than a chemical reaction such as the burning of coal, oil or gas, it might be possible to even reverse climate change if we can switch to carbon-free energy. How soon it will be no one can say but the future sure looks promising.

7 Facts About Galileo Galilei You Didn't Know

galileo galilei birthday interesting facts about galileo

Astronomer Galileo Galilei was the most well known scientist of old and one of the most underrated scientists today. He is not as widely recognized as Newton or Einstein despite laying the very foundations of physics in the 16th century.

But one can also learn from Galileo lessons of bravery and honesty. To search for truth in all his life, Galileo challenged and exposed the stubbornness of authorities – academic or religious. Following are 8 interesting facts on Galileo.

Middle finger


At the time of Galileo's death, his family wanted to erect a marble mausoleum in Galileo's honor. The then Pope of Catholic Church vehemently protested against it and Galileo was buried in a small underwhelming room as a result.

After the Pope died, the family reburied Galileo and removed three fingers from Galileo's remains. Today, the middle finger of Galileo's right hand is on display at a Museum in Florence. A prime example of how the tables have turned.

Father of physics


Einstein was highly inspired by Two New Sciences which was written while Galileo was under the house arrest. In this book, Galileo summarized all the experiments on physics he had conducted in the forty years earlier. As a result of this work, Galileo is often called the father of modern physics.

Einstein's hero


Galileo proposed that everything is relative... there is no absolute motion or absolute rest. That the laws of physics are the same in any system that is moving at a constant speed in a straight line, a principle that is central to Einstein's special theory of relativity.

Debunking Aristotle


A biography by Galileo's student Vincenzo Viviani states that Galileo gathered a crowd and climbed the Tower of Pisa to drop balls of the same material, but of different masses to prove Aristotle wrong. Galileo observed that an object twice as heavy did not fall twice as fast, as was Aristotle’s claim.

Apology by Church


In 1939, Pope Pius XII in his first speech, described Galileo as being among the most audacious heroes of research... not afraid of the stumbling blocks and the risks on the way. On 31 October 1992, Pope John Paul II acknowledged that the Church had erred in condemning Galileo 359 years ago.

Galileoscope


In 2009, a small mass-produced low-cost telescope was released with the motive to increase public interest in astronomy and science. It was developed to commemorate the fourth centenary of Galileo's first recorded astronomical observations with the telescope.

The 2-inch Galileoscope helped millions of people view the same things seen by Galileo Galilei with his telescope such as the craters of Earth's Moon, four of Jupiter's moons, and the Pleiades.

What is in a name?


Galileo disliked his given surname and did not use it in public documents as it was not compulsory at the time. He was named after a family ancestor Galileo Bonaiuti, who was an important physician and professor in Florence. Galileo Bonaiuti was buried in the same church where about 200 years later, Galileo Galilei was also buried.

Follow your heart


Since Galileo was named after a physician he was enrolled at the University of Pisa in 1580 to become a doctor. Although Galileo considered priesthood as a young man at his father's urging he obliged.

In 1581, when Galileo was in a lecture hall studying medicine he noticed a swinging chandelier, which air currents shifted about to swing in larger and smaller arcs.
To him, it seemed that the chandelier took the same amount of time to swing back and forth. This could be a fine time keeping instrument Galileo thought.

Up to this point, Galileo had deliberately been kept away from philosophy and mathematics because a doctor earned more than a mathematician. Galileo convinced his father into letting him study natural philosophy instead of medicine after this incident.

Japan's First Nobel Laureate Survived Two World Wars

hideki yukawa first japanese nobel laureate meson

Hideki Yukawa (1907-1981) was the first Japanese Nobel laureate who won the Nobel Prize for physics in 1949. This recognition was a silver lining to the devastating second world war that destroyed Japan's cities. Yukawa inspired a whole new generation of children to look up to scientists.

Childhood


Hideki Yukawa was born on January 23 in Tokyo as Hideki Ogawa to a middle class Japanese family of academicians that belonged to the Samurai clan.

While he was not as outstanding a student as his older brothers, Hideki showed an aptitude for mathematics and the sciences.

When Hideki was 8 years old, the first world war broke out in which Japan participated in an alliance with Entente Powers. By the time war ended, Yukawa was already a teenager in Kyoto.
Yukawa's geologist father wanted him to become a mathematician. Hideki ditched that idea in high school after his teacher marked his exam answer incorrect when he proved a theorem in a different manner than the teacher expected.

Education


Yukawa graduated from Kyoto University at age 22 where he stayed on as a teacher for four years, until 1933. During this time, he also married Sumi Yukawa in accordance with Japanese customs.

Since his father-in-law had no sons, Hideki Ogawa was adopted by the Yukawa family and thereby a name change from Ogawa to Yukawa. The couple had two sons.
In 1933, Yukawa moved to Osaka University where he earned his doctorate in 1938, aged 31. He rejoined Kyoto University in 1939 as a professor of theoretical physics.

Major works


In 1935, during his time at Osaka University, Yukawa proposed a theory of nuclear forces in which he predicted the existence of a carrier particle of strong and weak interactions.

The particle's predicted mass was between that of the electron and that of the proton. It was named meson taken from mesos, the Greek word for intermediate.

Yukawa returned to Kyoto University in 1939 but could not continue his research work as the second world war broke out. One of Yukawa's younger brothers died in the war.
With most physicists working in applied projects for wartime necessities, Yukawa who grew up resenting the war, spent this time with his family.

hideki yukawa first japanese nobel laureate with family meson

Good news came after the war ended as Meson was discovered in 1947 in the cosmic radiation showers by British experimental physicist Cecil Frank Powell. Yukawa went on to be the first Japanese Nobel laureate in 1949.

In 1955, Hideki Yukawa signed the Russell–Einstein Manifesto, issued by British polymath Bertrand Russell calling for nuclear disarmament. Yukawa retired from Kyoto University in 1970 as a Professor Emeritus.
Nobel laureate Yukawa, who survived two world wars, became an inspiration for modern Japan. Since his victory, 20 Japanese nationals have won Nobel Prize in the sciences. In 1977, Yukawa was awarded Order of the Rising Sun, one of the highest honors in Japan.
© 2019-2022
made with by vedang